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Data cloud is first processed
by an analytics machine.
Analytics refers to both
analysis of the data and the
development of data-driven
trading strategies which
naturally make use of
Optimization.
Models provide the
connection between the data
and the trading strategies.
Algorithms are step-by-step
procedures for computing
the solutions of not only
optimization but also other
mathematical and data
analysis problems.
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EMH

The efficient market hypothesis (EMH): Eugene Fama, 1960s.
I Utility-maximizing agents that have rational expectations.
I Update their expectations whenever new information appears.
I On average the agents are right even though individual agents can be

wrong about the market so that the net effect of their reactions is
random and cannot be reliably exploited to make an abnormal profit,
especially in the presence of transaction costs.

One of the simplest statistical models consistent with EMH is the
random walk model, i.e. Pi denotes the closing price of a security on
day i ,

I the price differences, ∆i=Pi -Pi−1, are i.i.d. N(µ,σ2) : Louise
Bachelier’s Ph.D. thesis The Theory of Speculation at the University of
Paris (Sorbonne) in 1900.

I the logarithmic returns, ri = logPi − logPi−1, are i.i.d. N(µG ,σ
2
G ):

Geometric Brownian Motion (GBM) proposed by Osborne (1959) and
Samuelson (1965), who removes any possibility of negative price.
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Infinite divisibility and Change-of-time-scale
Note that

log(Pt)− log(P0) =
t

∑
i=1

ri .

Thus,

r (year) =
12

∑
i=1

r (month)
i ∼ N(12×µ

(month)
G ,12× (σ

(month)
G )2)

=
252

∑
i=1

r (day)
i ∼ N(252×µ

(day)
G ,252× (σ

(day)
G )2)

where r (month)
i ∼ N(µ

(month)
G ,(σ

(month)
G )2) iid and

r (day)
i ∼ N(µ

(day)
G ,(σ

(day)
G )2) iid.

Such “infinite divisibility” of normal distribution is critical in
converting between returns of different time-scales: One of the most
fundamental operations in quantitative finance.
Empirical justification of the return’s normality is crucial.
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Empirical analysis of the random walk model

Kendall (1953) analyzed 19 equity and 3 commodity price series that
were sampled in a weekly and/or monthly manner and found the
following stylized behaviors:
(A) the serial correlation of all lags (the autocorrelation) for the price

differences are all of very small magnitude, (which seems to support
the random walk model),

(B) the distribution of the price differences is symmetric about zero and
leptokurtic, i.e. the tails of the distribution are thicker than the
Gaussian tails (so-called the fat-tailedness) and the empirical peak is
higher than the Gaussian peak.

(A) was also found by Cowles and Jones (1937), Cowles (1960) and
Working (1960).
rt and ∆t behave quite similarly in terms of (A) and (B).
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Paretian Stable Distribution (I)
Mandelbrot (1963) suggests modelling the stylized features (A) & (B)
of ri by using the class of Stable Distribution such that similar
change-in-time-scale formulas can be obtained.
Self-decomposability (infinite divisibility): Let Y1, . . . ,Yn be i.i.d.
Stable(α,β ,γ,δ ). Then there exist cn > 0 and dn such that
Y1 + · · ·+Yn has the same distribution as cnY +dn , where Y
∼ Stable(α,β ,γ,δ ). In particular, for the case β = δ = 0 associated
with symmetric stable distributions, we can choose cn = n1/α and
dn = 0.
Using the symmetric stable distribution to model return ri , the
conversion of scales can be easily performed by

n

∑
i=1

ri = n1/α ×Y

where ri ∼ Stable(α,0,γ,0) iid and Y d
= r1.

In particular, GBM corresponds to β = δ = 0 and α = 2.
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Paretian Stable Distribution (II)
By applying a graphical method on the daily (respectively, monthly)
closing cotton price differences from 1900 to 1905 (respectively, from
1880 to 1940), Mandelbrot (1963) estimates the corresponding
α = 1.7 (< 2).
Mandelbrot calls non-normal stable distributions “stable Paretian
distributions” because they are the limiting distributions of normalized
random walks with Paretian (a.k.a. power law) increments.
In particular, Paretian refers to the distribution, introduced by Pareto,
that has probability cx−α of exceeding x as x → ∞. The Pareto
distribution has infinite mean for α ≤ 1, and infinite variance for
1< α ≤ 2.
Since the density function of Stable(α,β ,γ,δ ) does not have explicit
formulas except for special cases such as normal, Cauchy, and the
inverse Gaussian distribution (i.e., Lévy’s distribution of the first
passage time of Brownian motion), estimation of its parameters is far
from being routine and has evolved during the past 50 years after
Mandelbrot’s seminal paper.
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Subordinated Stochastic Processes (I)
Mandelbrot and Taylor (1967) :Use BT (t) to model the price Pt where
{Bs ,s ≥ 0} is BM and T (t) is a stable process with positive
increments which is independent of the BM.
T (t) is called the subordinator, which is a “random clock”.
Thus, BT (t) has stationary independent increments and the
increments have infinite variance because of T (t).
Clark (1973) removed the stable process assumption on T (t). Instead
he assumed vt = T (t)−T (t−1) > 0 to be i.i.d. with mean µ and
variance σ2 > 0. Then, ∆t = Pt −Pt−1|v(t)∼ N(0,γ2vt). Under
such model, the kurtosis of ∆t is greater than 3, i.e., the stylized
behaviors are captured within the finite variance framework.
Clark further relaxed the assumption of stationarity for the
independent increments of T (t) and provided the important insight
that vt = T (t)−T (t−1) might vary with the trading activity on day
t.
By using the trading volume Vt on day t as a proxy for vt , he
proposed to approximate γ2vt by AV a

t or exp(B +bVt).
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Subordinated Stochastic Processes: Real Data Example (I)
Pfizer daily closing prices between January 1, 2005 and December 31,
2014 together with the corresponding trading volumes.
Following Clark (1973), 43 cases that have ∆t = 0 are removed and
the following linear models are fitted:

log∆2
t = logA+a logVt + εt or log∆2

t = B +bVt + εt . (1)
The mean of Vt is of the order of 107, and the estimates are
log(Â) =−25.2, â = 1.23; B̂ =−4.83, b̂ = 2.47×10−8.
Since ∆t/

√vt ∼ N(0,γ2) under Clark’s model, normal QQ-plots of

z(a)
t =

∆t√
Â×V â

t

, z(b)
t =

∆t√
exp
{
B̂ + b̂Vt

} (2)

are shown Figure 1. It is clear that z(a)
t and z(b)

t are much closer to
the normal distribution than ∆t . In facf, the kurtosis of z(a)

t and z(b)
t

are 3.50 and 3.56, respectively, which are much closer to 3 than 9.9
(the kurtosis of ∆t).
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Subordinated Stochastic Processes: Real Data Example
(II)
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Figure 1: Normal QQ-plots of ∆t , z (a)
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t defined in
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ARMA, GARCH & Martingale Regression
Further developements of statistical models for rt or ∆t :

Box and Jenkins (1970): ARMA (autoregressive, moving average)
model built for daily ∆t of IBM stock.
Volatility clustering patterns were found in stock returns and other
econometric time series and were captured by the ARCH model
introduced by Engle (1982) and its generalization GARCH by
Bollerslev: extensions of the ARMA model with martingale difference
(instead of i.i.d.) innovations to r2t .
Lai and Wei (1982) : Developed “stochastic regression” to analyze
the behavior of stochastic input-output systems. In particular, the
output yt is related to xt via yt = βββ>xt + εt , in which εt represents
random noise that is assumed to be a martingale difference sequence.
(Thus, it is also called the ‘martingale regression” .)

I xt depends on the past outputs and inputs.
I It includes ARMA and GARCH models as special cases (explained in

the next 2 slides).
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ARMA, GARCH & Martingale Regression (II)
Specifically, letting Ft be the σ -field (information set) generated by
(xs ,ys), s ≤ t, it is assumed in stochastic regression that
E (εt |Ft−1) = 0 and xt is Ft−1-measurable. The AR(p) model is a
special case with xt = (yt−1, . . . ,yt−p)>.
The ARMA(p,q) model is more complicated because the random
disturbances come in the form of εt + c1εt−1 + · · ·+ cqεt−q.
On the other hand, if εt−1, . . . ,εt−q were observable, then this would
reduce to a stochastic regression model with
xt = (yt−1, . . . ,yt−p,εt−1, . . . ,εt−q)>.
Lai and Wei (1986): The extended least squares estimator of the
ARMA parameters, i.e, if the parameters were known, then one could
indeed retrieve εt−1, . . . ,εt−q from (xs ,ys), 1≤ s ≤ t, by assuming
xs = 0 and εs = 0 for s ≤ 0, which is the basis of computing the
likelihood function.
Lai and Ying (1991) subsequently applied martingale theory similar to
that for extended least squares to analyze the recursive maximum
likelihood estimator.
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ARMA, GARCH & Martingale Regression (III)
Note that the GARCH(h,k) model εt = σtζt ,
σ2

t = ω + ∑
h
i=1βiσ

2
t−i + ∑

k
j=1αjε

2
t−j in which ζt are i.i.d. with mean 0

and variance 1, can be written as an ARMA model for ε2t :

ε
2
t = ω +

max(h,k)

∑
j=1

(αj + βj)ε
2
t−j + ηt −

h

∑
i=1

βiηt−i ,

in which ηt = ε2t −σ2
t is a martingale difference sequence and αj = 0

for j > k, βi = 0 for i > h.
Thus, the assumption of martingale difference (instead of i.i.d.
zero-mean) εt allows time series modeling of εt to incorporate
dynamic changes in volatility. This volatility modeling also involves a
martingale structure with martingale difference innovations ηt .
Thus, yt = βββ>xt + εt is called the “martingale regression”
Martingale regression is a much more effective modeling tool (than
the random walk and its cousins) in capturing the stylized features of
asset returns.
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From Single Asset Return Model to Multi-Asset Strategy
Markowitz Portfolio Theory (MPT): m assets’ return with mean
vector µµµ = (µ1, . . . ,µm)> and covariance matrix ΣΣΣ.
Portfolio weight vector: w = (w1, . . . ,wm)> with w>1 = 1.
Markowitz’s efficient portfolio for target mean return µ∗ (short-selling
is allowed):

weff = argmin
w

w>ΣΣΣw subject to w>µµµ = µ∗, w>1 = 1.

weff =
{
BΣΣΣ−11−AΣΣΣ−1µµµ + µ∗

(
CΣΣΣ−1µµµ−AΣΣΣ−11

)}/
D where

A = µµµ>ΣΣΣ−11, B = µµµ>ΣΣΣ−1µµµ, C = 1>ΣΣΣ−11, and D = BC −A2.
Efficient frontier is the collection of all possible (µ∗,

√
w>effΣΣΣweff)

µµµ and ΣΣΣ are actually unknown – Plug-in frontier: Replacing them by
the sample mean vector µ̂µµ and covariance matrix Σ̂ΣΣ of a training
sample of historical returns rt = (r1t , . . . , rmt)>, 1≤ t ≤ n.
However, this plug-in frontier is no longer optimal because µ̂µµ and Σ̂ΣΣ
actually differ from µµµ and ΣΣΣ, and portfolios associated with the
plug-in frontier can perform worse than an equally weighted portfolio
that is highly inefficient.

15/78



Three Approaches to Markowitz’s Enigma
Dimension reduction in estimating ΣΣΣ via multifactor models, i.e.,
relating the ith asset returns ri to k factors f1, . . . , fk by
ri = αi + (f1, . . . , fk)>βββ i + εi , where αi and βββ i are unknown regression
parameters and εi is an unobserved random disturbance that has
mean 0 and is uncorrelated. Examples: CAPM, APT and
Fama-French three-factor model.
Use shrinkage estimates of ΣΣΣ in the form of Σ̂ΣΣ = δ̂ F̂ + (1− δ̂ )S where
δ̂ is an estimator of the optimal shrinkage constant and
S = n−1∑

n
i=1(ri − r̄ )(ri − r̄)>. F̂ is given by the mean of the prior

distribution or a structured covariance matrix F with much fewer
parameters than m(m+1)/2; see Ledoit and Wolf (2003, 2004). The
estimate of µµµ can also be handled by shrinkage similarly.
To correct for the bias of ŵeff, use the average of the bootstrap
weight vectors w̄ = B−1∑

B
b=1 ŵ∗b, where ŵ∗b is the estimated optimal

portfolio weight vector based on the bth bootstrap sample
{r∗b1, . . . ,r∗bn} drawn with replacement from the observed sample
{r1, . . . ,rn}; see Michaud (1989).
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New approach of Lai et al. (2011b) : Neo-MPT (I)

To handle the parameter uncertainty, Lai et al. (2011b) (abbreviated by
LXC) proposed using the portfolio via the following optimization scheme
(to replace the classical MPT which is derived under the assumption of
known parameters)

max
{
E (w>rn+1)−λVar(w>rn+1)

}
(3)

LXC solve (3) by rewriting it as the following maximization problem over
η :

max
η

{
E
[
w>(η)rn+1

]
−λVar

[
w>(η)rn+1

]}
, (4)

where w(η) is the solution of the stochastic optimization problem

w(η) = argmin
w

{
λE
[
(w>rn+1)2

]
−ηE (w>rn+1)

}
. (5)
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New approach of LXC: Neo-MPT (II)
In particular, when there is no limit on short selling, w(η) in (5) is given
explicitly by

w(η) = arg min
w:w>1=1

{
λw>Vnw−ηw>µµµn

}
=

1
Cn

V−1n 1 +
η

2λ
V−1n

(
µµµn−

An
Cn

1
)
,

(6)

where the second equality can be derived by using a Lagrange multiplier
and

An = µµµ
>
n V−1n 1 = 1>V−1n µµµn, Bn = µµµ

>
n V−1n µµµn, Cn = 1>V−1n 1.

with µn and Vn being estimated by the martingale regression models in
LXC.
The above approach is called Neo-MPT to highlight their similarity with
MPT in searching for optimal portfolio.
Remark: Quadratic programming can be used to compute w(η) for more
general linear and quadratic constraints (to handle various form of short
selling limits).
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Combining Martingale Regression with Neo-MPT (I)
To incorporate the factor structure to the model that captures the
stylized properties, LXC proposed a martingale regression model for
rit (the return of the ith security on day t):

rit = βββ
>
i xi ,t−1 + εit , (7)

where the components of xi ,t−1 include 1, factor variables such as the
return of a market portfolio like S&P 500 at time t−1, and lagged
variables ri ,t−1, ri ,t−2, . . . . (Note: βββ i can be estimated by the method
of moments.)
LXC model the heteroskedasticity by assuming that εit = si ,t−1(γγγ i )zit ,
where zit are i.i.d. with E (zit) = 0 and Var(zit) = 1, γγγ i is a parameter
vector which can be estimated by maximum likelihood or generalized
method of moments, and si ,t−1 is a given function that depends on
ri ,t−1, ri ,t−2, . . . .
A well-known example is the GARCH(1,1) model

εit = si ,t−1zit , s2i ,t−1 = ωi +ais2i ,t−2 +bi r2i ,t−1, (8)
for which γγγ i = (ωi ,ai ,bi ).
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Combining Martingale Regression with Neo-MPT (II)
Note that (7)–(8) models the asset returns separately and the returns
of different assets are linked only via the vector zt which are assumed
to be i.i.d. (but their components are not uncorrelated).
Such model is substantially more parsimonious than a multivariate
regression or a multivariate GARCH model.
The conditional cross-sectional covariance between the returns of
assets i and j given Rn = {r1, . . . ,rn} is given by

Cov(ri ,n+1, rj,n+1|Rn) = si ,n(γγγ i )sj,n(γγγ j)Cov(zi ,n+1,zj,n+1|Rn),

for the model (7)–(8). Thus, the estimator of E (rn+1|Rn) and
E (rn+1r>n+1|Rn) are µµµn = (β̂ββ

>
1 x1,n, . . . ,β̂ββ

>
mxm,n)> and

Vn = µµµnµµµ>n + (ŝi ,nŝj,nσ̂ij)1≤i ,j≤n ,, respectively, in which β̂ββ i is the least
squares estimate of βββ i , and ŝl ,n and σ̂ij are the usual estimates of sl ,n
and Cov(zi ,1,zj,1) based on Rn.
These estimators of E (rn+1|Rn) and E (rn+1r>n+1|Rn) are the required
inputs of the LXC’s Neo-MPT.

20/78



Choice of λ

Theoretically, the Lagrange multiplier λ in (3) can be regarded as the
investor’s risk-aversion index when variance is used to measure risk.
However, in practice, it may be difficult to specify an investor’s risk
aversion parameter λ .
LXC suggests taking λ as a tuning parameter which is chosen by
maximizing (over a grid of possible λ ) the bootstrap estimate of the

information ratio Eµµµ,ΣΣΣ(wλ r− r0)

/√
Varµµµ,ΣΣΣ(w>

λ
r− r0).

In LXC’s real data study, the S&P 500 Index is taken as the
benchmark portfolio.
Also, λ is chosen by maximizing the information ratio over the grid
λ ∈ {2i : i =−3,−2, . . . ,6}.
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Real Data Study of Neo-MPT (I)

LXC Data: CRSP monthly stock market data from January 1985 to
December 2009.
m = 50 stocks with the largest market values among those that have
no missing monthly prices in the training period of the first 10 years.
LXC evaluate out-of-sample performance for each month after the
training period.
They choose m = 50 stocks with the largest market values among
those that have no missing monthly prices in the training period.
Short selling is allowed, with the constraint wi ≥−0.05 for all i .
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Real Data Study of Neo-MPT (II)

Two forms of martingale regression model 7 are considered. NPEBAR
sets xi ,t−1 = (1, ri ,t−1) and NPEBSRG simply adds the first lag of S&P
500 Index return to xi ,t−1.
NPEB refers to the non-parametric empirical Bayes methodology
which is the general approach for computing the optimal portfolio
under Neo-MPT framework (by treating the unknown parameters as
state variables).
Figure 2: Time series plot of the cumulative realized excess returns
over the S&P 500 Index (the benchmark) during the test period of
180 months, for NPEBSRG, NPEBAR, the plug-in portfolio of MPT as
well as the Ledoit-Wolf portfolio and Michaud’s bootstrap portfolio,
using µ∗ = 0.015 as the target return.
Figure 2: NPEBSRG performs markedly better than NPEBAR, which
already greatly outperforms the other three procedures that perform
similarly to each other.
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Real Data Study of Neo-MPT (III)
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Figure 2: Realized cumulative excess returns over the S&P 500 Index.
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Active Portfolio Management
The cornerstones of quantitative portfolio management are prediction
of asset returns from a large pool of investment possibilities, risk
estimation, and portfolio optimization.
There are two main styles of portfolio management – passive and
active.
Passive portfolio management constructs and administers portfolios
that tracks some given index. Rationale: Index tracking incurs low
cost as it does not require much information gathering on individual
stocks. By reducing investment costs, the net return improves.
Moreover, relatively infrequent trading results in fewer capital gains
and therefore lower taxes.
Goal of active portfolio management: Construct portfolios that aim to
outperform some index or benchmark. The additional return that a
portfolio generates relative to the benchmark is commonly known as
the alpha of the portfolio. Performance is measured by the
information ratio that expresses mean excess return in units of its
standard deviation.
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Active Alpha and Exotic Beta
Two main sources of alpha are (a) superior information, and (b)
efficient information processing.
Active portfolio management outperforms the passive approach in the
absence of transaction costs, but the advantage may be outweighed
by the transaction costs.
Let rrr ∈ Rm be the return vector of m assets. The returns of the
portfolio and benchmark are rP =www>Prrr and rB =www>Brrr where wwwP and
wwwB are the corresponding portfolio weights. Consider the one-factor
model rP − rf = α + β (rB− rf ) + ε where rf is the risk-free rate,
subtracting rB− rf from both sides of the equation defines the “active
return” of the portfolio by rP − rB = α + βP (rB− rf ) + ε, in which the
“active" α denotes the additional return of the portfolio over that of
the benchmark, βP = β −1 is known as the active beta of the
portfolio.
Since the benchmark portfolio has beta equal to 1 (and therefore zero
active beta), a portfolio with positive alpha and small |β |< 1 can
have a high information ratio. Such a portfolio is said to have an
“exotic beta”.26/78



Active Portfolio Optimization via Neo-MPT
An active portfolio seeks to get better risk-adjusted returns than the
benchmark portfolio B to justify the fees of the portfolio manager.
Since the difference w̃ww =wwwP −wwwB satisfies w̃ww>111 = 0 for given
portfolio P, Neo-MPT can be reformulated for the active portfolio
weight vector w̃ww as:

max
{
E (w̃ww>rrrn+1)−λVar(w̃ww>rrrn+1)

}
,

subject to w̃ww>111 = 0 and w̃ww ∈ C ,
(9)

where C represents long-short and other constraints.
λ is again chosen by maximizing the information ratio estimated from
training data.
This is different from the previous Neo-MPT because it tries to
modify the benchmark portfolio weights, which are often updated
daily and therefore already contains “free" market information.
The formulation of (9) can conveniently incorporate domain
knowledge and prior beliefs about future movements of the stocks and
of their associated firms and financial sectors.
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Neo-MPT Active Portfolio: Real Data Study (I)

To illustrate Neo-MPT Active Portfolio, LXC use a value-weighted
portfolio of 50 stocks as the benchmark portfolio and the constraint
set C = {w̃ww :−wwwB ≤ w̃ww ≤ c111−wwwB}, with c = 0.1, i.e., the portfolio is
long only and the total position in any stock cannot exceed an upper
bound c.
Similar to Neo-MPT with martingale regression, m = 50 stocks are
chosen at the beginning of each month t so that they have a largest
market value among those in the CRSP database that have no
missing monthly pieces in the first 120 months, which are used as the
training samples.
Note that LXC does not incorporate domain knowledge in this active
portfolio study so that the corresponding performance of the proposed
methodology is comparable to the other procedures presented in
Table 1.
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Neo-MPT Active Portfolio: Real Data Study (II)
The plug-in portfolio in Table 1 is obtained via solving the
optimization problem

minE (w̃ww>ΣΣΣw̃ww), subject to w̃ww>µµµ = µ̃∗, w̃ww>111 = 0 and w̃ww ∈ C ; (10)

in which µµµ and ΣΣΣ are replaced, for the plug-in active portfolio, by
their sample estimates based on the training sample.
The covariance-shrinkage (abbreviated “shrink” in Table 1) active
portfolio uses a shrinkage estimator of ΣΣΣ (shrink towards a patterned
matrix that assumes all pairwise correlations to be equal (Ledoit and
Wolf, 2003).
Note that some levels of µ̃∗ may be vacuous for the plug-in, the
“shrink” and resampled (abbreviated “boot” for bootstrapping) active
portfolios in a given test period.
In this real data study, for µ̃∗ = 0.01,0.015,0.02,0.03, there are 92,
91, 91 and 80 test periods, respectively, for which (10) has solutions
when ΣΣΣ is replaced by either the sample covariance matrix or the
Ledoit-Wolf shrinkage estimator computed from the training sample.
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Neo-MPT Active Portfolio: Real Data Study (III)
Higher levels of target returns result in even fewer of the 180 test
periods for which (10) has solutions.
On the other hand, values of µ̃∗ that are lower than 1% may be of
little practical interest to active portfolio managers.
When (10) does not have a solution to provide a portfolio of a
specified type for a test period, LXC uses the value-weighted
benchmark as the portfolio for the test period.
Table 1(a) gives the actual (annualized) mean realized excess returns
to show the extent to which they match the target value µ̃∗, and also
the corresponding annualized standard deviations, over the 180 test
periods for the plug-in, covariance-shrinkage and resampled active
portfolios constructed with the above modification.
These numbers are very small, showing that the three portfolios differ
little from the benchmark portfolio, so the realized information ratios
that range from 0.24 to 0.83 for these active portfolios can be quite
misleading if the actual mean excess returns are not taken into
consideration.
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Neo-MPT Active Portfolio: Real Data Study (IV)

Table 1: Means and standard deviations (in parentheses) of annualized realized
excess returns over the value-based benchmark

µ̃∗ 0.01 0.015 0.02 0.03
λ 22 2 2−1 2−2
(a) All test periods by re-defining portfolios in some periods

Plug-in 0.001 (4.7e-3) 0.002 (7.3e-3) 0.003 (9.6e-3) 0.007 (1.4e-2)
Shrink 0.003 (4.3e-3) 0.004 (6.6e-3) 0.006 (8.8e-3) 0.011 (1.3e-2)
Boot 0.001 (2.5e-3) 0.001 (3.8e-3) 0.001 (5.1e-3) 0.003 (7.3e-3)

NPEB 0.029 (1.2e-1) 0.046 (1.3e-1) 0.053 (1.5e-1) 0.056 (1.6e-1)
(b) Test periods in which all portfolios are well defined

Plug-in 0.002 (6.6e-3) 0.004 (1.0e-2) 0.006 (1.4e-2) 0.014 (1.9e-2)
Shrink 0.005 (5.9e-3) 0.008 (9.0e-3) 0.012 (1.2e-2) 0.021 (1.8e-2)
Boot 0.001 (3.5e-3) 0.003 (5.3e-3) 0.003 (7.1e-3) 0.006 (1.0e-2)

NPEB 0.282 (9.3e-2) 0.367 (1.1e-1) 0.438 (1.1e-1) 0.460 (1.1e-2)
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From Single Period to Multiperiod (I)

diBartolomeo (2012): MPT “frames the time dimension of investing
as a single period over which the parameters of the probability
distribution of asset returns are both known with certainty and
unchanging”, but that “neither assumption is true in the real world.”
Academic research in “full multi-period optimization” has seldom
been used by investment professionals who instead focus on when it is
really necessary to bear the costs and use single-period mean-variance
optimization to rebalance their portfolio weights.
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From Single Period to Multiperiod (II)

Negative comments towards “all or nothing” rebalancing rules:
I When active managers are inactive because the potential benefits of

rebalancing are too small, this lack of trading is perceived by clients as
the manager being neglectful rather than as an analytically-driven
decision to reduce trading costs.

I After a period of inactivity, the eventual rebalancing concentrates the
required trading into a particular moment in time, resulting in market
impact and higher transaction cost.

Here we review some methods in the area of “academic full
multi-period optimization” and share some practical ideas on the
development of multiperiod strategies in when and how to rebalance
with transaction cost and parameter uncertainty in mind.
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Samuelson-Merton Theory of “Lifetime Portfolio
Selection” (I)

Merton (1969)’s continuous-time model: a bond paying a fixed
risk-free rate r > 0 and a stock with price dynamic:
dSt = St(α dt + σ dBt) with α > 0 and σ > 0.
The investor’s position is denoted by (Xt ,Yt), where Xt and Yt are
the dollar value of investment in bond and in stock, respectively.
For each t ∈ (0,T ], the investor consumes at rate Ct from the bond,
and Lt (respectively, Mt) represents the cumulative dollar value of
stock bought (respectively, sold) within the time interval [0, t]. Thus,
(Xt ,Yt) satisfies

dXt = (rXt −Ct)dt−dLt +dMt , (11)
dYt = αYt dt + σYt dBt +dLt −dMt . (12)
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Samuelson-Merton Theory of “Lifetime Portfolio
Selection” (I)

Solution of (12) is obtained by
Requiring Ct , Lt and Mt to be non-negative
Maximizing the expected utility (with the consumption and terminal
wealth both chosen from the class of constant relative risk aversion)

Solution: The optimal strategy is to devote a constant proportion (the
Merton proportion) p of the investment to the stock and to consume at a
rate proportional to wealth.
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Proportional Transaction Cost in“Lifetime Portfolio
Selection”

Suppose the investor pays fractions 0≤ λ < 1 and 0≤ µ < 1 of the
dollar value transacted on purchase and sale of a stock, respectively.
Then, the investor’s position (Xt ,Yt) satisfies

dXt = (rXt −Ct)dt− (1+ λ )dLt + (1−µ)dMt , (13)
dYt = αYt dt + σYt dWt +dLt −dMt . (14)

With these changes, the problem is still to find (C ,L,M) within the
feasible set that maximizes the expected utility.
It turns out to be a singular stochastic control problem, characterized
by a no-trade region that is bounded between a buy-boundary Bt and
a sell boundary St , buying stock immediately when the stock price St
is at or below the buy-boundary Bt , and selling stock immediately
when St ≥St .
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Multiperiod Mean-Variance Portfolio Rebalancing (I)
Even after incorporating proportional transaction costs and
multiperiod expected utility maximization theory, we cannot ignore
the fact that the active (or passive) portfolio fund’s performance is
evaluated periodically according to some risk-adjusted measure such
as information ratio.
That’s the reason why most active portfolio managers still prefer to
use Markowitz’s framework of mean-variance optimization.
Moreover, Levy and Markowitz (1979) and Kroll et al. (1984) have
shown how expected utility can be approximated by a function of
mean and variance in applications to portfolio selection.
However, mean-variance portfolio rebalancing in a multiperiod
dynamic framework has been a long-standing problem. Chapter 21 of
Grinold and Kahn (2000) :“Active portfolio management is a dynamic
problem,. . . . With a proper frame, managers should make decisions
now, accounting for these dynamics and interactions now and in the
future. One simple open question is, when should we trade (in the
presence of transaction costs)?”
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Multiperiod Mean-Variance Portfolio Rebalancing (II)
Merton (1990) has introduced a continuous-time analog of
mean-variance optimization and Zhou and Li (2000) provide a
linear-quadratic (LQ) stochastic control framework for the problem.
Pliska (1997) and Li and Ng (2000) consider the discrete-time version
of this multiperiod problem. However, because of the “curse of
dimensionality” in dynamic programming, this approach has to be
limited to relatively few assets and is seldom used in practice; see
Kritzman et al. (2007).
Instead, heuristic procedures extending single-period mean-variance
analysis to multiple periods in a changing world, which are scalable to
higher dimensions, are often used.
In particular, Markowitz and van Dijk (2003) (denoted by MvD)
propose to use (a) a “mean-variance surrogate”, which is a linear
combination of the mean and variance of the portfolio return, to
substitute for the discounted sum of the conditional expected future
utilities given the information up to the present in an infinite-horizon
setting, and (b) approximate dynamic programming (ADP).
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Multiperiod Mean-Variance Portfolio Rebalancing (III)

Kritzman et al. (2007) report some simulation studies, using real
world scenarios, comparing the Markowitz-van-Dijk (MvD) approach
with the dynamic programming (DP) solution that is feasible in these
cases and several standard industry heuristics.
They find that the performance of MvD is “remarkably close” to that
of DP in cases with DP can be computed with reliable numerical
accuracy, and “far superior to solutions based on standard industry
heuristics.”
They also highlight the issue of “a changing world” in MvD’s title,
saying: “Almost immediately upon implementation (of mean-variance
analysis to determine optimal portfolio weights), however, the
portfolio’s weights become sub-optimal as changes in asset prices
cause the portfolio to drift away from the optimal targets.”
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Dynamic Mean-Variance Portfolio Optimization in the
Presence of Transaction Costs (I)

Markowitz and van Dijk (2003) and Kritzman et al. (2007)
incorporate linear transaction costs

Ct =
m

∑
j=1

κj |w j
t −w j

t−1| (15)

in carrying out the MvD heuristic procedure, in which κ1, . . . ,κm are
prescribed constants, and their portfolios do not include short selling.
Gârleanu and Pedersen (2013) consider more tractable transaction
costs that are quadratic functions of ∆uuut = uuut −uuut−1, where uj

t is the
number of shares of stock j in the portfolio at time t.
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Dynamic Mean-Variance Portfolio Optimization in the
Presence of Transaction Costs (II)

They assume a multi-factor model for the vector R̃̃R̃Rt+1 of next
period’s excess returns over the risk-free rate Rf , multiplied by
current stock prices, so that the components of R̃̃R̃Rt+1 are
R̃ j

t+1 = P j
t (R j

t+1−Rf ), j = 1, . . . ,m:

R̃̃R̃Rt+1 =BfBfBf t +εεεt+1, (16)
with observed factor fff t at time t and known covariance matrix ΣΣΣ for
the i.i.d. random disturbances εεεt+1.
Assuming a vector autoregressive model fff t+1 = (III−ΦΦΦ)fff t +www t+1 for
the factors, they consider the optimization problem of sequential
choice of uuut to maximize

E
∞

∑
t=1

(1−ρ)t
[

(1−ρ)(uuuᵀt R̃̃R̃Rt+1− γuuuᵀt ΣuΣuΣut)− 1
2(∆uuut)ᵀΛΛΛ∆uuut

]
, (17)

in which the transaction cost matrix ΛΛΛ is proportional to ΣΣΣ, with
λ > 0 being the constant of proportionality.
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Dynamic Mean-Variance Portfolio Optimization in the
Presence of Transaction Costs (III)

The parameter 0< ρ < 1 is a discount factor in the infinite-horizon
problem (17), in which γ either a Lagrange multiplier when a risk
constraint is imposed or a measure of the investor’s risk aversion in
the absence of risk constraints.
Because of the linear dynamics and quadratic costs consisting of both
uuuᵀt ΣuΣuΣut and (∆uuut)ᵀΛΛΛ∆uuut , (17) (as a a Markov decision problem with
state fff t and control ∆uuut) can be solved explicitly by dynamic
programming.
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Dynamic Mean-Variance Portfolio Optimization in the
Presence of Transaction Costs (IV)

They give an empirical application of this approach using 15 different
commodity futures in the period January 1, 1996 – January 23, 2009,
showing superior net returns relative to several benchmarks.
The factors they choose are (a) mean divided by standard deviation of
the past 5 days’ price changes for each commodity future, stacked
into a vector, (b) vector of an analogous quantities for past year’s
price changes, and (c) corresponding vector for the past 5 years’ price
changes.
For the transition matrix ΛΛΛ = λΣΣΣ, they use an estimate of λ proposed
by Engle et al. (2012). They also use a shrinkage estimator of ΣΣΣ for
their empirical study.
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Dynamic Portfolio Selection in the Presence of Parameter
Uncertainty (I)

While the issue of parameter uncertainty under MPT framework is
addressed by various researchers (including LXC), the role of
sequential learning under the fully dynamic (continuous-time)
portfolio optimization has also been recognized by Williams (1977),
Detemple (1986), Dothan and Feldman (1986), Gennotte (1986), and
Brennan (1998).
In particular, Brennan (1998) treat the unknown drift parameters as
state variables and estimate them sequentially by a filtering approach.
These sequential estimates are used to substitute for the parameters
in the procedures of Merton (1971) and others that assume known
parameters in the asset price models.
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Dynamic Portfolio Selection in the Presence of Parameter
Uncertainty (II)

Model of Brennan (1998): a risk-free asset with instantaneous rate of
return r and a risky asset dPt/Pt = µdt + σdBt in which σ is known
to the investor but µ is unknown and with a prior distribution
N(m0,v0).
µ can be learnt via the posterior distribution N(mt ,vt), in which mt
is given by the Kalman-Bucy filter

dmt =
vt
σ2

(
dPt
Pt
−mtdt

)
, with vt =

v0σ2

v0t + σ2 ; (18)

By maximizing the expected utility of the investor’s terminal wealth
ZT , the optimal portfolio weight wt , 0≤ t ≤ T can then be solved by
using dynamic programming.
He applies this approach to an empirical study with the S&P 500
index as the risky asset for the 69-year period 1926–1994 and shows
that imperfect knowledge about the parameters gives rise to two quite
distinct phenomena which he labels as “estimation risk" and
“learning".45/78



Dynamic Portfolio Selection in the Presence of Parameter
Uncertainty (III)

He points out that although increased risk due to uncertainty about
the mean return tends to reduce the fraction of the portfolio allocated
to the risky asset, “the prospect of learning more about the true value
of the mean parameter, µ, as more returns are observed, induces an
additional hedging demand for the risky asset."
Xia (2001) examines the effects of estimation risk and learning in a
more general framework and shows that “the hedge demand
associated with the uncertain parameters plays a predominant role in
the optimal strategy”, which is “horizon dependent: the optimal stock
allocation can increase, decrease or vary non-monotonically with the
horizon, because parameter uncertainty induces a state-dependent
hedge demand that may increase or decrease with the horizon.”
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Dynamic Portfolio Selection in the Presence of Parameter
Uncertainty (IV)

The price process of Xia (2001) is dPt/Pt = µtdt + σdBt , in which
µt = α +βββ

>fff t and fff t is a k×1 vector of observable factors that
undergo linear stochastic dynamics dfff t = (AAA0,t +AAA1,tβββ )dt +ΣΣΣ

1/2
t dB̃̃B̃Bt ,

where AAA1,t and ΣΣΣt are given (k×k) matrices and AAA0,t is a k×1
vector that may depend on (PPPt ,fff t), and B̃̃B̃Bt is a k-dimensional
Brownian motion that is independent of Bt . Assuming a normal prior
distribution for (α,βββ>)>, the posterior distribution given (PPPs ,fff s),
0≤ s ≤ t, is normal and is given by the Kalman-Bucy filter.
Cvitanić et al. (2006) follow up on Brennan’s work but extend to m
risky assets plus a market or benchmark portfolio. They use the the
Kalman-Bucy filter to show that the posterior distribution of the
unknown drift vector given the observed prices up to time t is
multivariate normal. Also, they derive an explicit formula for the
optimal portfolio weight by adopting the power utility function.
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Dynamic Portfolio Selection in the Presence of Parameter
Uncertainty (V)

Thus, filtering (specifically the Kalman-Bucy filter) has played a
prominent role in dynamic portfolio optimization when there is
uncertainty about the drift parameters of the price processes.
Uncertainty about the volatility parameters, however, has not received
much attention in the literature and previous works all assumed them
to be known. The main reason for the lack of similar treatment of
uncertainty about the volatility parameters is that it would involve
nonlinear filtering methods.
However, there are important recent advances in this problem by
using sequential Monte Carlo methods called adaptive particle filters
that can be used to handle volatility estimation; see Chan and Lai
(2013, 2016), Lai and Bukkapatanam (2013), and Chapter 6 of Lai
and Xing (2016).
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Statistical Arbitrage
Malkiel (2003) : “Obviously, I am biased against the chartist. . . .
Technical analysis is anathema to the academic world. . . the method
is patently false.”
Brock et al. (1992, p. 1732): “ (it) has been enjoying a renaissance
on Wall Street” and that “all major brokerage firms publish technical
commentary on the market and individual securities. . . based on
technical analysis.”
Let’s put off EMH and consider a wide variety of quantitative trading
strategies that attempt to generate expected returns exceeding a
certain level by searching for and capitalizing on statistical arbitrage
opportunities (SAOs).
“Technical analysis" could link to nonparametric regression and
change-point detection methods as discussed in Brock et al. (1992),
Lo et al. (2000) and Section 11.1.1 of Lai and Xing (2008).
The validation of investment strategies could be performed by using
the multiple testing methodology developed by Lai, Gross, and Shen
(2011a).
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Filter Rule and equivalent CUSUM Change-point Detection
Rule (I)

Filter rule is built upon the concepts of: drawdown
Dt = max0≤k≤t Pk−Pt , and drawup Ut = Pt−min0≤k≤t Pk at time t.
Buy signal if Dt/(max0≤k≤t Pk)≥ c (suggesting a 100c% drop from
the running maximum price).
Sell signal if Ut/(min0≤k≤t Pk)≥ c. Letting rk = log(Pk/Pk−1) and
St = logP0 + ∑

t
k=1 rk .

Note that

Ut

/(
min
0≤k≤t

Pk

)
≥ c ⇐⇒ St − min

0≤k≤t
Sk ≥ log(1+ c) (19)
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Filter Rule and equivalent CUSUM Change-point Detection
Rule (II)

Hence the sell signal of the filter rule corresponds to the CUSUM rule
in quality control: take corrective action as soon as
St −min0≤k≤t Sk ≥ b; see Lai and Xing (2008, p. 279) and Page
(1954).
Alexander (1961) and Fama and Blume (1966) showed empirically
that after taking transaction costs into account, the filter rule did not
outperform the buy-and-hold strategy that simply buys the stock and
holds it throughout the time period under consideration.
Lam and Yam (1997) consider more general CUSUM rules and
convert them to the filter rule form that involves drawups and
drawdowns, and provide empirical evidence of the improvement of
these rules over classical filter rules.
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Moving Average Rules and Window-Limited GLR Fault
Detection Schemes

Moving average rules: Popular because of their simplicity and
intuitive appeal (see Lai and Xing (2008, p. 277), Brock et al. (1992),
and Sullivan et al. (1999)).
Lai (1995, Lemma 2) shows that the moving average rule with
window size m can have detection delay that is asymptotically as
efficient as the CUSUM rule if m is chosen appropriately.
Variable-length moving averages are closely related to the
window-limited GLR fault detection schemes (when the post-change
parameter is not assumed known). See Willsky and Jones (1976) and
Lai (1995, Section 3.3).
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Directional Trading using Neural Networks (I)

Gencay (1998): Directional trading strategies whose cumulative
log-return for an investment horizon of n days is Sn = ∑

n
t=1 ŷtrt ,

where ŷt = 1 (or −1) for a long (or short) position of a
stock/security/currency at time t.
ŷt chosen is an estimate of the Bernoulli variable yt = 2× (I{rt>0}−1)
based on observations up to time t−1. Gencay (1998) uses a
single-layer neural network estimate and cross-validation to determine
the number of hidden units in the neural network.
He also reports an empirical study that shows markedly better
performance than the buy-and-hold strategy without considering of
the impact of transaction costs and prediction errors yt − ŷt .
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Directional Trading using Neural Networks (II)

Incorporating these considerations suggests a modified directional
trading rule

ŷt =


1 if π̂1

t ≥ q
−1 if π̂2

t ≥ q
0 otherwise,

where π̂1
t , or π̂2

t , is the estimate of the conditional probability that
rt ≥ c1, or rt ≤ c2, respectively, given the information set Ft−1 to
time t−1, and 2q < 1.
The conditional probabilities can be estimated by logistic regression;
see Section 4.1 of Lai and Xing (2008).
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Time Series, Momentum, and Pairs Trading Strategies (I)

Whereas the (nonparametric) regression approach focuses on patterns
of past data with the hope that such patterns can be extrapolated to
the future, a suitably chosen time series model can address prediction
more directly.
Cross-sectional momentum strategies: Buying recent “winners” that
outperform others and selling recent “losers” that underperform.
Rationale: Continuation into the future of the relative performance of
a group of stock securities.
Jegadeesh and Titman (1993): Firms with relatively high returns over
the past 3 to 12 months continue to outperform firms with relatively
lower returns over the same sample period in their empirical study.
Lewellen (2002): “... suggests that prices are not even weak-form
efficient”.
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Time Series, Momentum, and Pairs Trading Strategies (II)

Moskowitz et al. (2012): Time-series momentum strategies (which
are based on each security’s past absolute performance, not relative
to those of other securities) performed well relative to cross-sectional
momentum strategies.

I Substantial abnormal returns in a diversified portfolio of time series
momentum strategies across all asset classes that performed best
during extreme markets.

I After examining of the trading activities of speculators and hedgers,
they conclude “speculators profit from time series momentum at the
expense of hedgers".
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Contrarian Strategies & Behavioral Finance (I)

Contrarian strategies monitor markets and investor sentiments to
detect cognitive biases prevailing in the market.
Rationale: The psychological and interpretational aspects of human
investment decisions often push prices away from their intrinsic values.
Psychology, and in particular the herd behavior, is part of human
nature.
The interpretational difficulty of human beings in estimating future
company value from annual reports, news and commentaries.
All these lead to poor estimate of the stock’s intrinsic value and may
produce periods of undervaluation or overvaluation.
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Contrarian Strategies & Behavioral Finance (II)

Contrarian strategies invest against (contrary to) the market, buying
the out-of-favor stocks or shorting the preferred ones, and waiting for
price reversals when the market rediscovers value in the out-of-favor
stocks or shuns the high-fliers.
Contrarian strategies are therefore closely related to behavioral
finance: a subfield of Finance and of Economics that brings
psychological theory and human behavior into financial modeling,
predictions and decisions, and economic analysis and policy.
Behavioral finance provides an alternative view of the market to EMH
under which prices should reflect their intrinsic values.
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Prospect theory of Kahneman and Tversky (1979)
Certainty effect

I “People underweight outcomes that are merely probable in comparison
with outcomes that are obtained with certainty.

I "Risk aversion in choices involving sure gains and to risk-seeking in
choices involving sure losses."

Isolation effect
I “People generally discard components that are shared by all prospects

under consideration."
I "Leads to inconsistent preferences when the same choice is presented in

different forms."
Prospect theory is “an alternative theory of choice, in which value is
assigned to gains and losses rather than to final assets and in which
probabilities are replaced by decision weights".
“The value function is normally concave for gains, commonly convex
for losses, and is generally steeper for losses than for gains. Decision
weights are generally lower than the corresponding probabilities,
except in the range of low probabilities. Overweighting of low
probabilities may contribute to the attractiveness of both insurance
and gambling.”
Benartzi and Thaler (1995): Single-period portfolio choice for an
investor with prospect-type value function.
Barberis et al. (2001) bring prospect theory into asset pricing as a
model for the level of average returns.
Jin and Zhou (2008) formulate and study a general continuous-time
behavioral portfolio selection model under prospect theory that
features S-shaped value functions and probability distortions, which
are non-linear transformations of the probability scale, enlarging a
small probability and diminishing a large probability. These probability
distortions lead to the Choquet integral as a substitute for
conventional expectation.
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From Value Investing to Global Macro Strategies (I)
Value investing : Determining the “Intrinsic value” of a listed company
via fundamental analysis of the company and its business sector.
plays an important role in determining the company’s intrinsic value,
In particular, it involves predicting future cash flows of the company
over an investment horizon.
Such prediction is also related to the analysis of macroeconomic
trends.
The analysis and prediction of global macroeconomic developments
feature prominently in global macro strategies that invest on a large
scale around the world based on these predictions and geopolitical
developments including government policies and inter-government
relations.
The analytics component of systematic global macro strategies used
by hedge funds involves monitoring interest rate trends, business
cycles, the global network of flow of funds, global imbalance patterns,
and changing growth models of emerging economies.
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From Value Investing to Global Macro Strategies (II)

Hedge fund strategies can be broadly classified as “discretionary”,
relying on the skill and experience of the fund managers, and
“systematic”, relying on quantitative analysis of data and computer
models and algorithms to implement the trading positions.
Many global macro funds trade in the commodities and futures
markets.
Famous example: George Soros is best known for netting $1 billion
profit by taking a short position of the pound sterling in 1992 when
he correctly predicted that the British government would devalue the
pound sterling at the time of the European Rate Mechanism debacle.
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Evaluation of Investment Strategies & Multiple Testing (I)

Data snooping issue in the evaluation of the profitability of trading
strategies

I Bootstrap methods of White (2000) and Hansen (2005)
I Stepdown bootstrap tests to control the family-wise error rate in

multiple testing; seeRomano and Wolf (2005).
I These methods are useful for in-sample evaluation of trading strategies

during their development.
Out-of-sample (ex-post) evaluation is more definitive but may be too
late because they have already been used and resulted in losses.
An in-sample (ex-ante) surrogate of an ex-post performance measure
can be implemented by k-fold cross-validation; see Hastie et al.
(2009).
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Evaluation of Investment Strategies & Multiple Testing (II)

The aforementioned bootstrap methods can maintain the family-wise
error rate and avoid the pitfalls of data snooping in empirical testing
of the profitability of trading strategies. However, there is a lack of
systematic simulation study and theoretical development of the power
of these tests of a large number of hypotheses.
Lai and Tsang (2016) have recently filled the gap by developing a
comprehensive theory and methodology for efficient post-selection
testing.
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Evaluation of Investment Strategies & Multiple Testing
(III)

How to evaluate the performance of investment managers/strategies
has been a long-standing problem in finance.
Henriksson and Merton (1981) proposed statistical methods to test
for the forecasting skills of market-timers.
Pesaran and Timmermann (1992) developed a nonparametric test of
the forecasting skill in predicting the direction of change of an
economic variable under consideration, and applied it in two empirical
studies in the British manufacturing sector.
The above 2 tests are based on the assumption of i.i.d. pairs of
forecasts and outcomes.
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Evaluation of Investment Strategies & Multiple Testing
(IV)

From our previous discussion about the stylized features of returns,
the test statistics should account for the time series effects in returns.
In addition, more sophisticated forecasts would incorporate
uncertainties in the forecasts by giving, for example, the probability of
price increase rather than whether the price will increase.
Such probability forecasts are in fact implicit in the directional trading
strategies.
Testing the skills in probability forecasts when there are also time
series effects is considerably more difficult.
Lai, Gross, and Shen (2011a) have recently made use of the
martingale structure implicit in forecasting to resolve these difficulties.
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Conclusion
After the tumultuous period marked by the 2007-2008 Financial Crisis
and the Great Recession of 2009, the financial industry has entered a
new era.The onset of this era is marked by two “revolutions” that
have transformed modern life and business.
One is technological, dubbed “the FinTech revolution” for financial
services by the May 9, 2015, issue of The Economist which says: “In
the years since the crash of 2007-08, policymakers have concentrated
on making finance safer. . . . Away from the regulator spotlight,
another revolution is under way. . . . From payments to wealth
management, from peer-to-peer lending to crowdfunding, a new
generation of startups is taking aim at the heart of the industry – and
a pot of revenues that Goldman Sachs estimates is worth $4.7 trillion.
. . . fintech firms are growing fast.” The other is called “big data
revolution”.
Such new technological environment enables swift development in
quantitative trading in terms of data analysis, modeling, optimization
and strategy evaluation.
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